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As digital technology ramps up for this century,
an ever-increasing number of RF applications

will involve the transmission of digital data from
one point to another. The general scheme is to con-

vert the data into a suitable baseband signal that is
then modulated onto an RF carrier. Some pervasive
examples include cable modems, mobile phones and
high-definition television (HDTV). In each of these
cases, analog information is converted into digital

form as an ordered set of logical 1’s and 0’s (bits).
The task at hand is to transmit these bits between
source and destination, whether by phone line, coax-
ial cable, optical fiber or free space. 

A brief history lesson
In its simplest form, the transmission of binary

information (i.e., bits) between two points is a sim-
ple task. Consider Morse code. The “dots” and “dash-
es” of Morse code represent a binary form of trans-
mission that has been in use since the mid-19th cen-
tury. It found application in the telegraph and ship-
to-ship light signaling. In today’s environment, how-
ever, digital transmission has become a much more
challenging proposition.

The main reason is that the number of bits that
must be sent in a given time interval (data rate) is
continually increasing. Unfortunately, the data rate
is constrained by the bandwidth available for a
given application. Furthermore, the presence of
noise in a communications system also puts a con-
straint on the maximum error-free data rate. The
relationship between data rate, bandwidth and
noise was quantified by Shannon (1948) and marked
a breakthrough in communications theory. 

Digital data: Peeling back the layers
In modern data transmission systems, bits or

groups of bits (symbols) are typically transmitted in
the form of individual pulses of energy. A rectangu-
lar pulse is probably the most fundamental. It is
easy to implement in a real-world system because it
can be directly compared to opening and closing a
switch, which is synonymous with the concept of
binary information. For example, a “1” bit might be
used to turn on an energy source for the duration of
one pulse interval (τ seconds), which would produce
an output level, “A” (see Figure 1a). Alternately, a
“0” bit would turn off the energy source, producing
an output level of zero during one pulse interval.

The Fourier transform of the pulse yields its spec-
tral characteristics, which is shown in Figure 1b.
Note that a pulse of width τ has the bulk of its ener-
gy contained in the main lobe, which spans a one-
sided bandwidth of 1/τ Hz. This would imply that
the frequency span of a data transmission channel
must be at least 2/τ Hz wide. More will be said about
this later.

Figure 1 shows that a pulse of a given width, τ,
spans a bandwidth that is inversely related to τ. If a
data rate of 1/τ bits per second is chosen, then each
bit occupies one pulse width (namely, τ seconds).
Obviously, if we wish to send bits at a faster rate,
then the value of τ must be made smaller.
Unfortunately, this forces the bandwidth to increase
proportionally (see Figure. 1b).

Such data-rate/bandwidth relationships pose a
problem for band-limited systems. This is mainly
because most transmission systems have band
limitations imposed by either the natural band-
width of the transmission medium (copper wire,
coaxial cable, optical fiber) or by governmental or
regulatory conditions. Thus, the challenge in data
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transmission systems is to obtain the
highest possible data rate in the band-
width allotted with the least number
of errors (preferably none).

Pulse shaping: The details
Before delving into the details of

pulse shaping, it is important to under-
stand that pulses are sent by the trans-
mitter and ultimately detected by the
receiver in any data transmission sys-
tem. At the receiver, the goal is to sam-
ple the received signal at an optimal
point in the pulse interval to maximize
the probability of an accurate binary

decision. This implies that the funda-
mental shapes of the pulses be such
that they do not interfere with one
another at the optimal sampling point.

There are two criteria that ensure
noninterference. Criterion one is that
the pulse shape exhibits a zero crossing
at the sampling point of all pulse inter-
vals except its own. Otherwise, the
residual effect of other pulses will intro-
duce errors into the decision making
process. Criterion two is that the shape
of the pulses be such that the amplitude
decays rapidly outside of the pulse
interval.

This is important because any real
system will contain timing jitter,
which means that the actual sampling
point of the receiver will not always be
optimal for each and every pulse. So,
even if the pulse shape provides a zero
crossing at the optimal sampling point
of other pulse intervals, timing jitter
in the receiver could cause the sam-
pling instant to move, thereby missing
the zero crossing point. This, too,

introduces error into the decision-
making process. Thus, the quicker a
pulse decays outside of its pulse inter-
val, the less likely it is to allow timing
jitter to introduce errors when sam-
pling adjacent pulses. In addition to
the noninterference criteria, there is
the ever-present need to limit the
pulse bandwidth, as explained earlier.

The rectangular pulse
The rectangular pulse, by definition,

meets criterion number one because it
is zero at all points outside of the pre-
sent pulse interval. It clearly cannot
cause interference during the sampling
time of other pulses. The trouble with
the rectangular pulse, however, is that
it has significant energy over a fairly
large bandwidth as indicated by its
Fourier transform (see Figure 1b). In
fact, because the spectrum of the pulse
is given by the familiar sin(πx)/πx (sinc)
response, its bandwidth actually
extends to infinity. The unbounded fre-
quency response of the rectangular
pulse renders it unsuitable for modern
transmission systems. This is where
pulse shaping filters come into play.

If the rectangular pulse is not the
best choice for band-limited data trans-
mission, then what pulse shape will
limit bandwidth, decay quickly, and
provide zero crossings at the pulse sam-
pling times? The raised cosine pulse,
which is used in a wide variety of mod-
ern data transmission systems. The
magnitude spectrum, P(ω), of the raised
cosine pulse is given by:

(1)

The spectral shape of the raised cosine
pulse is shown in Figure 2a. The
inverse Fourier transform of P(ω) yields
the time-domain response, p(t), of the
raised cosine pulse (see Figure 2b). This

is also referred to as the impulse
response and is given by:

(2)

Care must be taken when (2) is used
for calculation because the denominator
can go to zero if αt/τ = ±½. Therefore,
any program used to compute p(t) must
test for the occurrence of αt/τ = ±½.
Because it can be shown that the limit
of p(t) as αt/τ approaches ±½ is given by
(π/4) sinc(t/τ), this is the formula to use
when the special case of αt/τ = ±½ is
encountered.

The raised cosine pulse
Unlike the rectangular pulse, the

raised cosine pulse takes on the shape
of a sinc pulse, as indicated by the left-
most term of p(t). Unfortunately, the
name “raised cosine” is misleading. It
actually refers to the pulse’s frequency
spectrum, P(ω), not to its time domain
shape, p(t). The precise shape of the
raised cosine spectrum is determined by
the parameter, α, where 0 ≤ α ≤ 1. 

Specifically, α governs the bandwidth
occupied by the pulse and the rate at
which the tails of the pulse decay. A
value of α = 0 offers the narrowest
bandwidth, but the slowest rate of
decay in the time domain. When α = 1,
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Figure 1. A single rectangular pulse and its
Fourier transform.

Figure 2. Spectral shape and inverse Fourier
transform of the raised cosine pulse.
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the bandwidth is 1/τ , but the time
domain tails decay rapidly. It is inter-
esting to note that the α = 1 case offers
a double-sided bandwidth of 2/τ. This
exactly matches the bandwidth of the
main lobe of a rectangular pulse, but
with the added benefit of rapidly decay-
ing time-domain tails. Conversely,
inverse when α = 0, the bandwidth is
reduced to 1/τ, implying a factor-of-two
increase in data rate for the same band-
width occupied by a rectangular pulse.
However, this comes at the cost of a
much slower rate of decay in the tails of
the pulse. Thus, the parameter α gives
the system designer a trade-off between
increased data rate and time-domain
tail suppression. The latter is of prime
importance for systems with relatively
high timing jitter at the receiver.

Figure 3 shows how a train of raised
cosine pulses interact when the time
between pulses coincides with the data
rate. Note how the zero crossings are
coincident with the pulse centers (the
sampling point) as desired. 

It should be pointed out that the
raised cosine pulse is not a cure-all. Its
application is restricted to energy puls-
es that are real and even (i.e., symmet-

ric about t = 0). A different form of pulse
shaping is required for pulses that are
not real and even. However, regardless
of the necessary pulse shape, once it is
expressible in either the time or fre-
quency domain, the process of designing
a pulse-shaping filter remains the
same. In this article, only the raised
cosine pulse shape will be considered. 
A variant of the raised cosine pulse is
often used in modern systems – the
root-raised cosine response. The fre-
quency response is expressed simply as
the square root of P(ω) (and square root
of p(t) in the time domain). This shape
is used when it is desirable to share the
pulse-shaping load between the trans-
mitter and receiver.

It’s better in digital
Before the advent of digital filter

design, pulse-shaping filters had to be
implemented as analog filter designs.
Digital filters, however, offer several
advantages of analog designs. They can
be integrated directly on silicon, which
makes them attractive for system-on-a-
chip (SoC) designs. Furthermore, the
problem of component drift due to tem-
perature and aging is eliminated. Also,
their spectral characteristics are consis-
tent and reproducible and do not suffer
from component tolerance issues. 

With the plethora of digital filter
design tools available on the market,
the designer can design a variety of dig-
ital filters with little effort.

Choices, choices, choices
Given that the pulse shape has been

defined mathematically (such as the
raised cosine pulse), the next task is to
decide which basic category of digital
filter to use: finite impulse response
(FIR) or infinite impulse response (IIR). 

The functional form of FIR and IIR
filters is shown in Figure 4. The funda-
mental difference between them is the
fact that the IIR contains feedback. This
should be obvious from the fact that the
bi coefficient’s feedback scaled and
delayed samples of the output y(n).
Hence, the history of the output affects
the future of the output. This is not true
for the FIR, where y(n) only depends on
the history of the input samples, x(n).
The implication is that the response of
an IIR filter to an impulse (a single non-
zero sample followed by zero samples) is
infinite. That is, the IIR will continue to
produce non-zero output samples long
after the application of an impulse. This
is an undesirable consequence for data

pulse transmission (recall the noninter-
ference criteria).

The FIR does not suffer from this
problem because its architecture does
not contain any feedback elements. A
single, non-zero impulse at the input
will only yield output samples while the
impulse propagates down the delay
stages. Generally, pulse shaping filters
employ FIR designs.

The basic building blocks of a digital
filter are adders (⊕ ), multipliers (⊗ ),
and unit-delays (D); all of which can be
readily implemented in digital form.
Adders and multipliers are composed of
combinational logic while the unit
delays are composed of latches (which
require a clock signal). The basic filter-
ing operation consists of a sequence of
multiply/add/delay operations that
occur each time the delay stages are
clocked. This is effectively a convolution
operation, which may be expressed as:

y(n) = x(n) * h(n)

In this expression, * is the convolu-
tion operator and should not be taken to
mean simple multiplication. The
Fourier transform (or z-transform in the
case of digital filters) reveals that filter-
ing is synonymous with convolution.
This is the “secret” of digital filters —
by using relatively simple operations
(add/multiply/delay), a filtering opera-
tion can be realized. The trick, of
course, is coming up with the proper

Figure 3. Interaction of raised cosine pulses
when the time between pulses coincides with
the data rate.

Figure 5. An arbitrary digital filter frequency
response.

Figure 4. The functional form of FIR and IIR 
filters. Figure 6. Converting an impulse to a raised

cosine pulse by filtering.
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h(n) to produce the desired filtering
operation (i.e., spectral shaping in the
frequency domain). This is another topic
altogether, but the many digital filter
design tools that are available today
make this process easier than ever
before. These design tools give the
designer the ability to generate the nec-
essary filter coefficients for a desired
frequency response (or vice versa).

Other variables that enter into the
design process include determining the
optimal number of filter coefficients and
how much numeric precision (resolu-
tion) is required to get the job done. 

Resolution refers to the number of
bits used to represent the coefficient
values, as well as the number of bits
used to represent the sample values at
any given point in the filter. Resolution
affects the overall complexity of the
design because more bits means more
digital hardware.

How it comes together
Before proceeding with a design

example, it should be noted from Figure
4b that h(n) (the impulse response of
the filter) is directly determined by the
filter coefficients. This can be used to an
advantage in the filter design process,
because an outcome of the FIR filter
design process is the impulse response,
h(n). The h(n) values can be directly
substituted for the ai coefficients.

Step one
The first consideration in FIR filter

design is the sample rate (fs). This is the
rate at which the internal delay stages
are clocked. It turns out that the useful
frequency response characteristic of any
digital filter is limited to ½fs (the
Nyquist frequency), not fs as one might
assume. To demonstrate this concept,
an arbitrary digital filter frequency

response is shown in Figure 5. Now
recall the raised cosine response (see
Figure 2a), which can extend out to a
frequency of 1/τ (for α = 1). If one were
to operate a digital filter at the data
rate (1/τ), a problem would surface. 

Specifically, the filter frequency
response is restricted to the Nyquist
rate (namely ½τ). The implication is
that if a digital filter is used for pulse
shaping, then it must operate at a sam-
ple rate of at least twice the data rate to
span the frequency response character-
istic of the raised cosine pulse. That is,
the filter must oversample the data by
at least a factor of two, preferably more. 

Step two
The second consideration in FIR fil-

ter design is the number of tap coeffi-
cients (the ai values). Typically, this is
governed by two factors. The first is
the amount of oversampling desired.
More oversampling yields a more accu-
rate frequency response characteristic.
So a designer may elect to oversample
by three, four or more. The second fac-
tor is the length of time that the fil-
ter’s response is expected to span.

Typically, this is determined by the
number of bit (or symbol) intervals
that the designer would like the filter
response to occupy. 

Remember, an FIR filter impulse
response lasts only as long as the
number of taps. If the filter oversam-
ples by a factor of two and the desired
impulse response duration is five bits
(or symbols), then 10 taps are required
(2 x 5 = 10). Obviously, a trade-off
exists between the number of taps (cir-
cuit complexity) and the filter’s
response characteristic.

Why it works so well
The beauty of the pulse-shaping filter

concept is that rectangular pulses can
be used as the input to the filter. 

Recall that the basic filtering process
is synonymous with convolution in the
time domain. Also recall that digital fil-
ters provide a convolution operation.
For example, the filter impulse
response h(n) is convolved with the
input samples to yield the output sam-
ples. The convolution of a rectangular
pulse (more specifically, a unit impulse)
with a raised cosine impulse response
results in a raised cosine pulse at the
output (see Figure 6). The input to the
filter is a 1 or 0 (scaled to occupy the full
bit width of the filter’s input word size)
and the output is a raised cosine pulse
with all of the time and frequency
domain advantages that such a pulse
offers. All that is required is a digital-to-
analog converter (DAC) at the output of
the filter to convert the digital samples
into an analog waveform.

Next, examine a detailed example of
a raised cosine pulse-shaping filter
design. Consider a system in which
data must be transmitted at a rate of
1 Mb/s (i.e., τ = 1 µs). One is also told
that the timing jitter present at the

Figure 7. The frequency responses of two different versions of the raised cosine pulse-shaping filter.

Figure 8. A block diagram of one potential RF data transmitter design using digital filters.
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receiver is not known. Another design
constraint is that the digital circuitry
used to construct the digital filter will
operate at a maximum rate of 50 MHz.
Additionally, it has been given as part
of the design requirement that the fil-
ter impulse response span at least five
symbol periods.

In the absence of specific knowledge
about timing jitter at the receiver, one
is forced to assume the worst. This
implies that a value of α = 1 be used to
maximize the decay of the pulse tails. 

From Figure 2a, it can be seen that
this corresponds to a single-sided band-
width of 1/τ (1 MHz), which means that
the medium over which the data are
transmitted must be able to support a 
2 MHz bandwidth (the double-sided
bandwidth of the raised cosine spec-
trum). If the medium cannot support 
2 MHz, then one must consider a
means of squeezing more bits into the
same bandwidth. This can be done by a
variety of modulation schemes (QPSK,
16-QAM, etc.). In this example, it is
assumed that a bandwidth of 2 MHz is
acceptable.

Because it has been determined
that α = 1, it is necessary to operate
the filter at a sample rate of no less
than twice the data rate (or two sam-
ples per symbol). However, to provide
a more accurate spectral shape, one
may choose to oversample by a factor
of eight (i.e., eight samples/symbol).
This means that the digital filter must
operate at a rate of 8 MHz. This is
well within the specified 50 MHz oper-
ating range of the digital circuitry, so
the design is not in jeopardy.

It has been given that the filter
impulse response be designed to span
five symbols, so the filter must contain
at least 40 taps (eight samples/symbol x
five symbols = 40 samples). This will
provide the required duration of the
impulse response. However, 41 taps will
be chosen to avoid the half-symbol delay
associated with an even number of taps.

With α, τ, and the number of taps
defined, Equation 2 can now be used to
generate the filter taps. The value of t is
determined at increments of 125 ns (the
sampling period of the filter when oper-
ating at 8 MHz). The center of the
impulse response is given the value of t
= 0. Thus, the first value of t is 20 sam-
ples prior, or t = -2.5 µs.

How it all came together
The author used a PC-based version

of Mathcad to compute p(t) using the

above information (see Appendix). Any
suitable math program will do the job
(MatLab, Excel, etc.). It turns out that
because p(t) was computed at the filter
sample points, the values of p(t) corre-
spond one-to-one with h[n], the impulse
response of the filter. The results,
rounded to four decimal places, are list-
ed in Table 1.

Note the symmetry of the h(n) values
about n = 0. This redundancy can be
used to simplify the implementation of
the filter hardware. Because the filter is
of the oversampling variety, further

hardware simplification can be gained
by using a polyphase architecture.

If the filter is designed with floating
point multipliers and adders, then the
design is essentially done.

In the case of finite arithmetic, 10
bits is probably the minimum accept-
able resolution to handle tap coeffi-
cients that span four decimal places.
Formatted as twos-complement num-
bers, this will allow a range of –1.000
to +0.998046875 with a resolution of
2–10 (0.0009765625). This means that
the multiply and add stages of the fil-
ter must be designed to handle 10-bit
words. Also, the coefficients should be

scaled by some fractional value to
avoid overflow conditions in the hard-
ware. A generally accepted scale factor
is given by:

SF = [∑∑h(k)2]–1/2.

In words, it is the reciprocal of the
square root of the sum of the square of
each tap value. For the current exam-
ple, the scale factor is: SF = 0.408249.
After multiplying the h(n) by SF, the
resulting values are then converted to
10-bit words. Figure 7 shows the fre-
quency responses of two versions of
the raised cosine pulse-shaping filter.
One is a floating-point version of the
filter with the coefficients rounded to
four decimal places. The other is a
scaled, 10-bit, finite-math version of
the filter. Both responses behave well
in the passband, but the floating-point
version exhibits better out-of-band
attenuation. Also shown for compari-
son’s sake is the passband error rela-
tive to the ideal response (Equation 1).
Note that both responses exhibit less
than 0.2 dB error over a range of
about 90% of the passband.

The final frontier
With an understanding of how to cre-

ate digital pulse shaping filters, the RF
engineer can take on a larger role in the
design of digital transmission systems.
This is especially true today with semi-
conductor manufacturers offering high-
ly integrated, high-speed, mixed-signal
ICs. Figure 8 shows a detailed block
diagram of a possible RF data transmit-
ter design. The design is almost com-
pletely contained in two ICs (assuming
a PC or other external device serves as
the serial port controller).
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n h(n) n
-20 0 20
-19 -0.0022 19
-18 0.0037 18
-17 0.0031 17
-16 0 16
-15 0.0046 15
-14 0.081 14
-13 0.0072 13
-12 0 12
-11 0.0125 11
-10 0.0234 10
-9 0.0246 9
-8 0 8
-7 0.0624 7
-6 0.1698 6
-5 0.3201 5
-4 0.5 4
-3 0.686 3
-2 0.8488 2
-1 0.9603 1
0 1 0

Table 1. Impulse response values for p(t) of the
filter. 
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